virli/tutorial/4/howto.md

319 lines
10 KiB
Markdown

\newpage
Les espaces de noms -- *namespaces* {#namespaces}
===================================
## Introduction
Les espaces de noms du noyau, les *namespaces*, permettent de
dupliquer certaines structures, habituellement considérées uniques
pour le noyau, dans le but de les isoler d'un groupe de processus à un
autre.
On en dénombre sept (le dernier ayant été ajouté dans Linux 4.6) : `cgroup`,
`IPC`, `network`, `mount`, `PID`, `user` et `UTS`.
La notion d'espace de noms est relativement nouvelle et a été intégrée
progressivement au sein du noyau Linux. Aussi, toutes les structures
ne sont pas encore *containerisables* :
[le document fondateur](https://www.kernel.org/doc/ols/2006/ols2006v1-pages-101-112.pdf)
parle ainsi d'isoler les périphériques, ou encore l'horloge. Pour ce
dernier,
[un patch a même déjà été proposé](https://lwn.net/Articles/766089/).
### L'espace de noms `mount` {#mount-ns}
Depuis Linux 2.4.19.
Cet espace de noms isole la liste des points de montage.
Chaque processus appartenant à un *namespace mount* différent peut monter,
démonter et réorganiser à sa guise les points de montage, sans que cela n'ait
d'impact sur les processus hors de cet espace de noms. Une partition ne sera
donc pas nécessairement démontée après un appel à `umount(2)`, elle le sera
lorsqu'elle aura effectivement été démontée de chaque *namespace mount* dans
lequel elle était montée.
Attention il convient cependant de prendre garde aux types de liaison existant
entre vos points de montage (voir la partie sur
[les particularités des points de montage](#mount)), car les montages et
démontages pourraient alors être répercutés dans l'espace de noms parent.
Une manière rapide pour s'assurer que nos modifications ne sortiront pas de
notre *namespace* est d'appliquer le type esclave à l'ensemble de nos points de
montage, récursivement, dès que l'on est entré dans notre nouvel espace de
noms.
<div lang="en-US">
```bash
mount --make-rslave /
```
</div>
### L'espace de noms `UTS` {#uts-ns}
Depuis Linux 2.6.19.
Cet espace de noms isole le nom de machine et son domaine NIS.
### L'espace de noms `IPC` {#ipc-ns}
Depuis Linux 2.6.19.
Cet espace de noms isole les objets IPC et les files de messages POSIX.
Une fois le *namespace* attaché à un processus, il ne peut alors plus parler
qu'avec les autres processus de son espace de noms (lorsque ceux-ci passent par
l'API IPC du noyau).
### L'espace de noms `PID`
Depuis Linux 2.6.24.
Cet espace de noms isole la liste des processus et virtualise leurs numéros.
Une fois dans un espace, le processus ne voit que le sous-arbre de processus
également attachés à son espace. Il s'agit d'un sous-ensemble de l'arbre global
de PID : les processus de tous les PID *namespaces* apparaissent donc dans
l'arbre initial.
Pour chaque nouvel espace de noms de processus, une nouvelle numérotation est
initiée. Ainsi, le premier processus de cet espace porte le numéro 1 et aura
les mêmes propriétés que le processus `init` usuel\ ; entre autre, si un
processus est rendu orphelin dans ce *namespace*, il devient un fils de ce
processus, et non un fils de l'`init` de l'arbre global.
### L'espace de nom `network`
Depuis Linux 2.6.29.
Cet espace de noms fournit une isolation pour toutes les ressources associées
aux réseaux : les interfaces, les piles protocolaires IPv4 et IPv6, les tables
de routage, règles pare-feu, ports numérotés, etc.
Une interface réseau (`eth0`, `wlan0`, ...) ne peut se trouver que dans un seul
espace de noms à la fois. Il est par contre possible de les déplacer.
Lorsque le *namespace* est libéré (généralement lorsque le dernier processus
attaché à cet espace de noms se termine), les interfaces qui le composent sont
ramenées dans l'espace initial/racine (et non pas dans l'espace parent, en cas
d'imbrication).
### L'espace de noms `user`
Depuis Linux 3.8.
Cet espace de noms isole la liste des utilisateurs, des groupes, leurs
identifiants, les *capabilities*, la racine et le trousseau de clefs du noyau.
La principale caractéristique est que les identifiants d'utilisateur et de
groupe pour un processus peuvent être différents entre l'intérieur et
l'extérieur de l'espace de noms. Il est donc possible, alors que l'on est un
simple utilisateur à l'extérieur du *namespace*, d'avoir l'UID 0 dans le
conteneur.
### L'espace de noms `cgroup` {#cgroup-ns}
Depuis Linux 4.6.
Cet espace de noms filtre l'arborescence des *Control Group* en changeant la
racine de l'arborescence des cgroups. Au sein d'un *namespace*, la racine vue
correspond en fait à un sous-groupe de l'arborescence globale.
Ainsi, un processus dans un `CGroup` *namespace* ne peut pas voir le contenu
des sous-groupes parents (pouvant laisser fuiter des informations sur le reste
du système). Cela peut également permettre de faciliter la migration de
processus (d'un système à un autre) : l'arborescence des cgroups n'a alors
plus d'importance car le processus ne voit que son groupe.
## S'isoler dans un nouveau *namespace*
### Avec son coquillage
De la même manière que l'on peut utiliser l'appel système `chroot(2)` depuis un
shell via la commande `chroot(1)`, la commande `unshare(1)` permet de faire le
nécessaire pour lancer l'appel système `unshare(2)`, puis, tout comme
`chroot(1)`, exécuter le programme passé en paramètre.
En fonction des options qui lui sont passées, `unshare(1)` va créer le/les
nouveaux *namespaces* et placer le processus dedans.
Par exemple, nous pouvons modifier sans crainte le nom de notre machine, si
nous sommes passés dans un autre *namespace* `UTS` :
<div lang="en-US">
```
42sh# hostname --fqdn
koala.zoo.paris
42sh# sudo unshare -u /bin/bash
bash# hostname --fqdn
koala.zoo.paris
bash# hostname lynx.zoo.paris
bash# hostname --fqdn
lynx.zoo.paris
bash# exit
42sh# hostname --fqdn
koala.zoo.paris
```
</div>
Nous avons pu ici modifier le nom de la machine, sans que cela n'affecte notre
machine hôte.
### Les appels systèmes
L'appel système par excellence pour contrôler l'isolation d'un nouveau
processus est `clone(2)`.
L'isolement ou non du processus est faite en fonction des `flags` qui sont
passés à la fonction :
* `CLONE_NEWNS`,
* `CLONE_NEWUTS`,
* `CLONE_NEWIPC`,
* `CLONE_NEWPID`,
* `CLONE_NEWNET`,
* `CLONE_NEWUSER`,
* `CLONE_NEWCGROUP`.
On peut bien entendu cumuler un ou plusieurs de ces `flags`, et les combiner
avec d'autres `flags` attendu par la fonction.
Les mêmes `flags` sont utilisés lors des appels à `unshare(2)` ou `setns(2)`.
Pour créer un nouveau processus qui sera à la fois dans un nouvel espace de
noms réseau et dans un nouveau *namespace* `cgroup`, on écrirait un code
similaire à :
<div lang="en-US">
```c
#include <sched.h>
#define STACKSIZE (1024 * 1024)
static char child_stack[STACKSIZE];
int clone_flags = CLONE_CGROUP | CLONE_NEWNET | SIGCHLD;
pid_t pid = clone(do_execvp, // First function executed by child
child_stack + STACKSIZE, // Assume stack grows downward
clone_flags, // clone specials flags
args); // Arguments to pass to do_execvp
```
</div>
Dans cet exemple, le processus fils créé disposera d'un nouvel espace de noms
pour les *CGroups* et disposera d'une nouvelle pile réseau.
Un exemple complet d'utilisation de `clone(2)` et du *namespace* `UTS` est
donné dans le `man` de l'appel système.
## Rejoindre un *namespace*
Rejoindre un espace de noms se fait en utilisant l'appel système `setns(2)`,
auquel on passe le *file descriptor* d'un des liens du dossier
`/proc/<PID>/ns/` :
<div lang="en-US">
```c
#define _GNU_SOURCE
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
// ./a.out /proc/PID/ns/FILE cmd args...
int
main(int argc, char *argv[])
{
int fd = open(argv[1], O_RDONLY);
if (fd == -1)
{
perror("open");
return EXIT_FAILURE;
}
if (setns(fd, 0) == -1)
{
perror("setns");
return EXIT_FAILURE;
}
execvp(argv[2], &argv[2]);
perror("execve");
return EXIT_FAILURE;
}
```
</div>
Dans un shell, on utilisera la commande `nsenter(1)` :
<div lang="en-US">
```bash
42sh# nsenter --uts=/proc/42/ns/uts /bin/bash
```
</div>
## Durée de vie d'un *namespace* {#ns-lifetime}
Le noyau tient à jour un compteur de références pour chaque *namespace*. Dès
qu'une référence tombe à 0, l'espace de noms est automatiquement libéré, les
points de montage sont démontés, les interfaces réseaux sont réattribués à
l'espace de noms initial, ...
Ce compteur évolue selon plusieurs critères, et principalement selon le nombre
de processus qui l'utilise. C'est-à-dire que, la plupart du temps, le
*namespace* est libéré lorsque le dernier processus s'exécutant dedans se
termine.
Lorsque l'on a besoin de référencer un *namespace* (par exemple pour le faire
persister après le dernier processus), on peut utiliser un `mount bind` :
<div lang="en-US">
```bash
42sh# touch /tmp/ns/myrefns
42sh# mount --bind /proc/<PID>/ns/mount /tmp/ns/myrefns
```
</div>
De cette manière, même si le lien initial n'existe plus (si le `<PID>` s'est
terminé), `/tmp/ns/myrefns` pointera toujours au bon endroit.
On peut très bien utiliser directement ce fichier pour obtenir un descripteur
de fichier valide vers le *namespace* (pour passer à `setns(2)`).
### Faire persister un *namespace*
Il n'est pas possible de faire persister un espace de noms d'un reboot à
l'autre.
Même en étant attaché à un fichier du disque, il s'agit d'un pointeur vers une
structure du noyau, qui ne persistera pas au redémarrage.
## Aller plus loin {-}
Je vous recommande la lecture des *man* suivants :
* `namespaces(7)` : introduisant et énumérant les *namespaces* ;
Pour tout connaître en détails, [la série d'articles de Michael Kerrisk sur
les *namespaces*](https://lwn.net/Articles/531114/) est excellente ! Auquel il
faut ajouter [le petit dernier sur le `cgroup`
*namespace*](https://lwn.net/Articles/621006/).
[Cet article de Michael Crosby montrant l'utilisation de clone(2)](https://web.archive.org/web/20190206073558/http://crosbymichael.com/creating-containers-part-1.html)
est également des plus intéressants, pour ce qui concerne la programmation
plus bas-niveau.